Les « puces RFID » sont les circuits intégrés (IC) à l’intérieur des étiquettes ou des tags RFID. Malgré sa petite taille, il s’agit d’une puce informatique hautement intégrée contenant tous les composants d’un contrôleur, d’une mémoire de stockage et d’un microprocesseur.
La puce fonctionne en recevant de l’énergie à travers les ondes émises par l’antenne, puis le lecteur traite les lectures pour transmettre les données stockées dans le circuit intégré.
De nouveaux circuits intégrés dotés des dernières technologies apparaissent chaque jour, ce qui permet d’étendre leur mémoire interne et leur qualité. Ils disposent désormais d’une multitude de possibilités et de fonctionnalités, telles qu’établir des mots de passe et crypter des données ou disposer d’un système d’alarme EAS. Il existe d’autres types de puces qui combinent la technologie RFID UHF et la technologie NFC, comme la puce EM4423 de l’étiquette Smartrac Belt DF.
Abréviation | Nom | Mémoire EPC | Mémoire de l'utilisateur | Préfixe TID | Mémoire TID |
---|---|---|---|---|---|
Higgs 3 | Alien Higgs 3 | 96-bit | 512-bit | E200 3412 | 64 bits de TID sérialisé avec un numéro de série de 48 bits |
Higgs 9 | Alien Higgs 9 | 96/496 bits | Jusqu'à 688 bits | - | 48 bits de TID sérialisé avec un numéro de série de 32 bits |
Higgs 4 | Alien Higgs 4 | 128-bit | 128 bit | 64 bits de TID sérialisé avec un numéro de série de 32 bits | |
M4D | Impinj Monza 4D | 128 bits | 32 bits | E280 1100 | 96 bits de TID sérialisé avec un numéro de série de 48 bits |
M4i | Impinj Monza 4i | 256 bits | 480 bits | E280 1114 | 96 bits de TID sérialisé avec un numéro de série de 48 bits |
M4QT | Impinj Monza 4QT | 128 bits | 512 bits | E280 1105 | 96 bits de TID sérialisé avec un numéro de série de 48 bits |
R6-B | Impinj Monza R6-B | 96 bits | - | E280 1171 | 96 bits de TID sérialisé avec un numéro de série de 48 bits |
R6 | Impinj Monza R6 | 96 bits | - | E280 1160 | 96 bits de TID sérialisé avec un numéro de série de 48 bits |
R6-A | Impinj Monza R6-A | 96 bits | - | - | |
R6-P | Impinj Monza R6P | 96/128 bits | 64/32 bits | E280 1170 | 96 bits de TID sérialisé avec un numéro de série de 48 bits |
M730 | Impinj Monza M730 | 128 bits | - | E280 1191 | 96 bits de TID sérialisé avec un numéro de série de 48 bits |
M750 | Impinj Monza M750 | 96 bits | 32 bits | E280 1190 | 96 bits de TID sérialisé avec un numéro de série de 48 bits |
M770 | Impinj Monza M770 | ||||
M4E | Impinj Monza 4E | Jusqu'à 496 bits | 128 bits | E280 110C | 96 bits de TID sérialisé avec un numéro de série de 48 bits |
X-2K | Impinj Monza X-2K Dura | 128 bits | 2 176 bits | - | 96 bits de TID sérialisé |
X-8K | Impinj Monza X-8K Dura | 128 bits | 8 192 bits | - | 96 bits de TID sérialisé |
im | NXP im | 256 bits | 512 bits | E280 680A | 96 bits de TID sérialisé avec un numéro de série de 48 bits |
M5 | NXP UCODE 5 | 128 bits | 32 bits | E280 1102 | 96 bits de TID sérialisé avec un numéro de série de 48 bits |
R6 | NXP UCODE 6 | 96 bits | - | E280 1160 | 96 bits de TID sérialisé avec un numéro de série de 48 bits |
U7 | NXP UCODE 7 | 128 bits | - | E280 6810 | 96 bits de TID sérialisé avec un numéro de série de 48 bits |
U7XM+ | NXP UCODE 7+ | 448 bits | 2 kbit | E280 6D92 | 96 bits de TID sérialisé avec un numéro de série de 48 bits |
U7XM-1k | NXP UCODE 7XM | 448 bits | 1 kbit | E280 6D12 | 96 bits de TID sérialisé avec un numéro de série de 48 bits |
U7XM-2k | NXP UCODE 7XM | 448 bits | 2 kbit | E280 6F12 | 96 bits de TID sérialisé avec un numéro de série de 48 bits |
U8 | NXP UCODE 8 | 128 bits | - | E280 6894 | 96 bits de TID sérialisé avec un numéro de série de 48 bits |
U9 | NXP UCODE 9 | 96 bits | - | E280 6995 | 96 bits de TID sérialisé avec un numéro de série de 48 bits |
UDNA | NXP UCODE DNA | 224 bits | 3 kbit | E2C0 6892 | 96 bits de TID sérialisé avec un numéro de série de 48 bits |
UDNA C | NXP UCODE DNA City | 224 bits | 1 kbit | - | 96 bits de TID sérialisé |
UDNA T | NXP UCODE DNA Track | 448 bits | 256 bits | 96 bits de TID sérialisé | |
I2C | NXP UCODE I2C | 160 bits | 3 328 bits | 96 bits de TID sérialisé avec un numéro de série de 48 bits | |
G2iM | NXP UCODE G2iM | 256 bits | 320/640 bits | E200 680A | 96 bits de TID sérialisé avec un numéro de série de 48 bits |
G2iM+ | NXP UCODE G2iM+ | 448 bits | 512 bits | ||
G2iL | NXP UCODE G2il | 128 bits | - | E200 6806 | 64 bits de TID sérialisé avec un numéro de série de 32 bits |
Abréviation | Nom | Standard | Mémoire de l'utilisateur |
---|---|---|---|
NTAG 424 DNA | NXP NTAG 424 DNA TagTamper | ISO/IEC 14443-A NFC Forum T4T | 416 octets |
NTAG 424 DNA | NXP NTAG 424 DNA | ISO/IEC 14443-A NFC Forum T4T | 416 octets |
NTAG 213 | NXP NTAG 213 TagTamper | ISO/IEC 14443A1-3 NFC Forum T2T | 114 octets |
NTAG 213 | NXP NTAG 213 | ISO/IEC 14443A1-3 NFC Forum T2T | 114 octets |
NTAG 215 | NXP NTAG 215 | ISO/IEC 14443A1-3 NFC Forum T2T | 504 octets |
NTAG 216 | NXP NTAG 216 | ISO/IEC 14443A1-3 NFC Forum T2T | 888 octets |
NTAG 210 | NXP NTAG 210 | ISO/IEC 14443A1-3 NFC Forum T2T | 48 octets |
NTAG 212 | NXP NTAG 212 | ISO/IEC 14443A1-3 NFC Forum T2T | 128 octets |
NTAG 210µ | NXP NTAG 210 Micro | ISO/IEC 14443A1-3 NFC Forum T2T | 48 |
Dans la plupart des cas et des applications, des circuits intégrés standard à faible mémoire peuvent être utilisés. Des secteurs plus spécifiques tels que l’automobile, les produits pharmaceutiques ou les applications nécessitant une sécurité exigent des puces dotées d’une plus grande mémoire.
Comme vous l’avez vu, les circuits intégrés (CI) offrent de nombreuses variétés et possibilités. Pour de plus amples informations, y compris sur ses applications, n’hésitez pas à nous contacter.
Pouvons-nous vous aider ?
Trouvez le produit ou la solution RFID qui répond aux besoins de votre entreprise.
Demandez-nous de vous aider à trouver la bonne décision.